CT Superintendent’s Community of Practice
Facilitators

From the Great Schools Partnership:

David Ruff, executive director
Ted Hall, senior associate
Janet Garagliano, CT Liaison
www.greatschoolspartnership.org/presentations
Series Outcomes

• build capacity to implement mastery-based learning at scale across a school district

• explore and share ideas and strategies underway or planned in alignment with implementation

• create a network of like-minded educators for political and cultural support
Meeting Dates

⇒ September 22, 2015—Cromwell, Crowne Plaza
⇒ October 27, 2015—New Haven
⇒ December 8, 2015—Farmington
⇒ January 26, 2016—location TBD
⇒ March 1, 2016—location TBD
⇒ May 3, 2016—location TBD
Agenda

Welcome & Agenda Overview

What are Scoring Criteria?

Presenting a Dilemma

District Updates

Closing and Next Steps
Group Norms

- Build on and support one another’s efforts
- Acknowledge and encourage different approaches as we collaborate
- Trust the integrity of our colleagues
- Monitor our air time in group gatherings
- Communicate openly, clearly, and directly
- Acknowledge and honor different perspectives
- Assume positive intentions of all members
- Honor confidentiality regarding the conversations held here
Participant Expectations

- Follow and support the norms
- Attend all PLG meetings
- Contribute as able between meetings
MASTERY-BASED LEARNING

Is not a stand-alone intervention
Is a suite of practices resulting from the thoughtful combination of best practices currently used by expert educators with solid support in the literature.
Cross-Curricular Graduation Competencies define a set of significant learning concepts that are not within the domain of a single content area, but are embedded in multiple areas. These are drawn from the Mathematical Practices of the Common Core, the Characteristics of Students Who are College and Career Ready from the ELA Common Core, and associated Connecticut state standards.

Content-Area Graduation Competencies define a set of significant learning concepts in each content area. These are drawn from the Math Common Core and English/Language Arts Common Core and associated Connecticut state standards.

Mastery-Based Learning Simplified

Cross-Curricular Graduation Competencies

<table>
<thead>
<tr>
<th>Required for Graduation</th>
<th>Reporting Method</th>
<th>Assessment Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>Transcript and Report Cards</td>
<td>Demonstration by Body of Evidence Portfolios, exhibitions, and other culminating demonstrations of learning are assessed</td>
</tr>
<tr>
<td>YES</td>
<td>Transcript and Report Cards</td>
<td>Verification and Proficiency Student progress toward the achievement of competencies is determined and reported</td>
</tr>
<tr>
<td>NO</td>
<td>Progress Reports</td>
<td>Common School-Wide Assessments Common summative assessments ensure greater consistency in the evaluation of student learning</td>
</tr>
<tr>
<td>NO</td>
<td>Feedback to Student</td>
<td>Formative Teacher Assessments Ongoing formative assessment is used to evaluate student learning progress</td>
</tr>
</tbody>
</table>

Performance Indicators

5-10 indicators per content-area competency

Unit-Based Learning Objectives

Guided by essential questions, teachers use daily learning targets to create progressions that move students toward the demonstration of performance indicators

Content-Area Cluster Competencies

5-8 competencies per content area

© 2015 This work by Great Schools Partnership and the Connecticut State Department of Education is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Graduation Competency

Performance Indicator

Learning Objective
Assessment Pathways Simplified
A Great Schools Partnership Learning Model

We believe that reliability results from the careful alignment of demonstrations tasks and instruction with intended learning outcomes. Comparability is possible when teachers assess student work with task-neutral common scoring guides and have time to calibrate their understanding and use. The graphic below represents five general learning pathways and how they can be assessed. While each of these has instructional value, only the first four will lead to greater comparability over time because they are assessed using common scoring criteria. We believe that these pathways are valuable and represent the many ways educators are personalizing learning for students in a proficiency-based learning system.

LES
Student Choice in Learning

LESS
Student Choice in Learning

COMMON
Learning Experiences

COMMON
Demonstration Tasks

COMMON
Scoring Guides

COMMON
Learning Experiences

COMMON
Demonstration Tasks

COMMON
Scoring Guides

COMMON
Learning Experiences

UNIQUE
Demonstration Tasks

COMMON
Scoring Guides

UNIQUE
Learning Experiences

UNIQUE
Demonstration Tasks

COMMON
Scoring Guides

COMMON or **UNIQUE**
Learning Experiences

COMMON or **UNIQUE**
Demonstration Tasks

UNIQUE
Scoring Guides
Assessment Development

Step #1: Establish a system of college and career-ready content graduation competencies

a) District-wide content-area graduation competencies established.

b) Series of performance indicators aligned to each content-area graduation competency established for each set of grade spans (e.g. K-5, 6-8, and 9-12; could also be developed for smaller grade spans, or even for each specific grade level).
Assessment Development

Step #2: Establish Foundation

a) In vertical content area teams, determine where each graduation competency and performance indicator is currently assessed within existing courses, learning experiences, and pathways. Then **conduct a gap analysis and make necessary adjustments** to ensure that every possible pathway a student might take toward graduation provides sufficient opportunities to demonstrate their learning against every competency.

b) **Develop clear and descriptive scoring criteria** aligned to each performance indicator for every content-area graduation competency.
Assessment Development

Step #3: Implement proficiency-based learning

a) As teams consider their standards mapping document and/or their assessment mapping document, they may opt to identify one or more common assessment tasks to develop or revise collaboratively.

b) Once assessment tasks are created, use the backward design process to design units (or learning experiences) that will provide students with ample opportunities to acquire the knowledge and practice the skills necessary to successfully complete the expected related assessment task. Educators may plan and initiate formative assessment tasks that check on understanding against a series of learning objectives in order to provide clear and descriptive feedback to students in an on-going, consistent manner as they learn and collectively achieve the level of knowledge and skill associated with the performance indicator(s).
Assessment Development

Step #3: Implement proficiency-based learning

c) After determination of student readiness, **provide the assessment task**. Use the appropriate scoring guide to judge the quality of student work, determine proficiency level, provide clear and actionable feedback, and inform specific next steps for each student to take in order to prepare them for success in either the next task or – if they have not been successful – provide them with another opportunity to demonstrate their proficiency.

d) **Develop a comprehensive intervention and support system** for students who need additional help (or time) to acquire the necessary knowledge and skills to meet all expected graduation competencies.

e) Ensure that teachers (either in content-area or grade-level PLGs) have ample opportunity to **review and refine their scoring criteria, assessment tasks, and units** as well as calibrate their scoring judgments and subsequent offering of clear and actionable feedback.
Step #4: Provide multiple pathways for students to personalize their learning

a) **Develop Personalized Learning Plans** with every student (e.g. VT) that build on the interests and skills of the student; and allow for regular reflection, revision and communication of progress with educators, an advisor, and family.

b) **Establish a system of pathways** for students that is firmly grounded in equity to ensure that each pathway provides opportunities to demonstrate learning in ways that honors a student’s interests and learning style while also maintaining the same graduation competencies and levels of rigor. Students should be able to enter and exit pathways as their interests and skill sets evolve over time.
Assessment Development

Step #2: Implement proficiency-based learning

b) **Development of clear and descriptive scoring criteria** aligned to each performance indicator for every content-area graduation competency.
Crafting Scoring Criteria:
Design Guide- 5 Components

Scoring criteria:

• Are task neutral
• Are aligned with the level of cognitive demand in the Performance Indicator
• Include all elements of the Performance Indicator
• Describe complexity rather than frequency
• Focus on what students can do rather than deficiencies
Avoid Terms Focused on Frequency

- FREQUENTLY
- RELIABLY
- RARELY
- NEVER
Use Terms Focused on Cognitive Demand

- Describe
- Recognize
- Explain
- Create
Designing Scoring Criteria:
Continuum of Achievement

<table>
<thead>
<tr>
<th>Cognitive Demand</th>
<th>Weaker Statements</th>
<th>Stronger Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>What depth of knowledge does the performance indicator demand?</td>
<td>Lists tasks specific to assessments</td>
<td>Can be applied to a variety of assessments or tasks</td>
</tr>
<tr>
<td>Are there defined levels of achievement and rigor associated with each level of proficiency?</td>
<td>Emphasizes only frequency rather than cognitive demand (e.g. rarely, sometimes, never; 1, 2, 3 times)</td>
<td>Applies Bloom’s Revised Taxonomy, Marzano’s New Taxonomy, or Webb’s Depth of Knowledge scales when defining levels of achievement</td>
</tr>
<tr>
<td>Do the scoring criteria identify complexity rather than frequency?</td>
<td>Leaves out elements of the performance indicator</td>
<td>Includes all elements described in the performance indicator</td>
</tr>
<tr>
<td></td>
<td>In the “partially meets” or “does not meets” categories, describes deficits, rather than describing what a student can do</td>
<td>Describes what a student knows or is able to do at each level of proficiency</td>
</tr>
</tbody>
</table>
Designing Scoring Criteria:

Sample

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can describe linear and exponential functions as increasing/growth or decreasing/decay.</td>
<td>I can recognize how a linear or exponential function must change for a particular problem.</td>
<td>I can explain the starting value and the change factor for a linear and exponential function.</td>
<td>I can create models for real world problems in terms of linear and exponential functions.</td>
</tr>
</tbody>
</table>

Describe Recognize Explain Create
<table>
<thead>
<tr>
<th>Performance Indicators</th>
<th>Does Not Meet</th>
<th>Partially Meets</th>
<th>Meets</th>
<th>Exceeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be able to develop appropriate research questions. (CCSS.ELA-Literacy.WHST. 11-12-7)</td>
<td>I can list some specifics about a topic that would help develop my understanding</td>
<td>I can identify broad questions that are relevant to my studies and focus my research</td>
<td>I can construct open-ended questions that build on one another and require evidence and support</td>
<td>I can analyze my own research questions to refine them based on my earlier questions and learning</td>
</tr>
</tbody>
</table>
Creating a Rubric for a Summative Assessment

<table>
<thead>
<tr>
<th>Performance Indicator</th>
<th>Emerging</th>
<th>Developing</th>
<th>Accomplished</th>
<th>Exemplary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms (HS-PS1-1)</td>
<td>Student is able to locate an element on the periodic table</td>
<td>Student is able to locate an element on the periodic table, identify its basic properties, and determine the number of electrons in the outermost energy level.</td>
<td>Student is able to use the periodic table to accurately predict relative physical and chemical properties of elements. Student is able to describe the relationship between the pattern of electrons and other characteristics of that element.</td>
<td>Student is able to analyze observed relative physical and chemical properties of elements and classify them appropriately in the periodic table.</td>
</tr>
<tr>
<td>Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron state of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. (HS-PS-1-2)</td>
<td>Student is able to determine the outcome of a simple chemical reaction.</td>
<td>Student is able to determine the outcome of a simple chemical reaction and explain it in relation to the element's location on the periodic table.</td>
<td>Student is able to use their knowledge of the periodic table to predict the outcome of simple chemical reactions. Student is able to explain the outcomes by explicitly referencing the periodic table and its inherent patterns.</td>
<td>Student is able to compare the results of different chemical reactions and explain the differences in outcomes by explicitly referencing the periodic table and its inherent patterns such as outermost electrons, trends, and properties of reactants.</td>
</tr>
<tr>
<td>B. Use evidence and logic appropriately in communication</td>
<td>Recognize ideas, concepts, problems, or varied perspectives related to a topic or concept but does not use reasoning to generate a clear claim.</td>
<td>Student includes information from several sources and analyzes or compares the information from these sources.</td>
<td>Analyze and integrate carefully selected evidence from diverse sources and incorporate the relevant pieces into the finished work, analyzing or comparing the information from these sources.</td>
<td>Apply evidence in a novel or unfamiliar situation to design a model or solution.</td>
</tr>
</tbody>
</table>
Creating a Rubric for a Summative Assessment

<table>
<thead>
<tr>
<th>Performance Indicator</th>
<th>Emerging</th>
<th>Developing</th>
<th>Accomplished</th>
<th>Exemplary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Performance Indicator Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms (HS-PS1-1)</td>
<td>Student is able to locate an element on the periodic table, identify its basic properties, and determine the number of electrons in the outermost energy level.</td>
<td>Student is able to use the periodic table to accurately predict relative physical and chemical properties of elements, describe the relationship between the pattern of electrons and other characteristics of that element.</td>
<td>Student is able to analyze observed relative physical and chemical properties of elements and classify them appropriately in the periodic table.</td>
<td></td>
</tr>
<tr>
<td>Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron state of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. (HS-PS1-2)</td>
<td>Student is able to determine the outcome of a simple chemical reaction.</td>
<td>Student is able to use their knowledge of the periodic table to predict the outcome of simple chemical reactions by explicitly referencing the periodic table and its inherent patterns.</td>
<td>Student is able to compare the results of different chemical reactions and explain the differences in outcomes by explicitly referencing the periodic table and its inherent patterns such as outermost electrons, trends, and properties of reactants.</td>
<td></td>
</tr>
<tr>
<td>Cross-Curricular Performance Indicator B. Use evidence and logic appropriately in communication</td>
<td>Recognize ideas, concepts, problems, or varied perspectives, and use evidence and reasoning to generate a clear claim.</td>
<td>Analyze and integrate carefully selected evidence from diverse sources.</td>
<td>Apply evidence in a novel or unfamiliar situation to design a model or solution.</td>
<td></td>
</tr>
</tbody>
</table>
From Standards to Units

- Standards
- Performance Indicators
- Scoring Criteria
- Designing Summative Task
- Unit Design
- Instruction
- Formative Assessment
- Supports/Interventions
- Reporting Learning
- Scoring - with rubric
- Students attempt Summative Assessment Task
Proficiency-Based Learning Simplified
A Great Schools Partnership Learning Model

www.greatschoolspartnership.org/proficiency/

• State + Local Policies
• State + Local Standards
• Assessment + Verification
• Grading + Reporting
Consultancy

Step 1: Presentation of Dilemma (10 minutes)

Step 2: Audience asks clarifying questions (5 minutes)

Step 3: Audience asks probing questions (10 minutes)

Step 4: Audience conversation: What did we hear? What do we think about the problem? (15 minutes)

Step 5: Presenter response (5 minutes)

Step 6: Debrief the process (5 minutes)
District Updates

• What are 2 – 3 district actions about which you are most proud? How have these actions changed learning for students?

• What is one question or issue that has been perplexing you?
Next Meeting

- September 22, 2015—Cromwell, Crowne Plaza
- October 27, 2015—New Haven
- **December 8, 2015—Farmington**
- January 26, 2016—location TBD
- March 1, 2016—location TBD
- May 3, 2016—location TBD