Proficiency & Special Education: Making Quality Learning Work for all Children

Maine Administrators of Services for Children with Disabilities
Fall Conference
October 29, 2015
David J. Ruff
executive director

www.greatschoolspartnership.org/MADSEC

Agenda

GSP’s Approach to Proficiency

Foundational Expectations

Possible Solutions Worth Investigating

Assessment of Standards v Assessment of Tasks

Outcomes

Introduce participants to:

- Proficiency-Based Learning Simplified;
- Ten Principles of Proficiency-Based Learning;
- Assessment Pathways; and
- Strategies with Special Needs Students
Is a non-profit support organization based in Portland working nationally with schools, districts and state agencies, providing coaching, and developing tools.

We Believe

In equitable, personalized, rigorous learning for all students leading to readiness for college, careers, and citizenship

We Believe

That schools must simultaneously attend to policy, practice, and community engagement

We Believe

School improvement is context-based, not one-size fits all
PROFICIENCY-BASED LEARNING

Is not a stand-alone intervention

PROFICIENCY-BASED LEARNING

Is a suite of practices resulting from the thoughtful combination of best practices currently used by expert educators with solid support in the literature

Standard

Established norms or benchmarks for learning that define what students need to know and be able to do.

(Un)Common Terms for “Standards”

- **Graduation Standard**
- **Learning Targets**
- **Power Standards**
- **Priority Standard**
- **Learning Objectives**
- **Descriptors**
- **Proficiency Standards**
- **Performance Indicators**
- **Benchmarks**
- **Competencies**
- **Mastery Objectives**
- **Measurement Targets**
Proficiency-Based Learning Simplified

A Great Schools Partnership Learning Model

<table>
<thead>
<tr>
<th>Graduation Requirement</th>
<th>Reporting Method</th>
<th>Cross-Curricular Graduation Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>Transcripts and Report Cards</td>
<td>5-8 standards taught in all content areas</td>
</tr>
<tr>
<td>NO</td>
<td>Progress Reports</td>
<td>9-10 indicators for each area curriculum and content area standard that move students toward proficiency and the achievement of graduation standards</td>
</tr>
<tr>
<td>NO</td>
<td>Teacher Feedback</td>
<td>Learning Objectives</td>
</tr>
</tbody>
</table>

Assessment Method

- **Body of Evidence**: Students demonstrate achievement of standards through a body of evidence evaluated using common rubrics.
- **Verification of Proficiency**: Students demonstrate achievement of content-area graduation standards through their aggregate performance on summative assessments over time.
- **Summative Assessment**: Graded summative assessments are used to evaluate the achievement of performance indicators.
- **Formative Assessment**: Ungraded formative assessments are used to evaluate student learning progress.

A Graduation Standard Is...

A standard that focuses instruction on the most foundational, enduring, and leveraged concepts and skills within a discipline.
Transcripts and Report Cards

Progress Reports

Teacher Feedback

Content-Area Graduation Standards

5–8 standards for each content area

Performance Indicators

5–10 indicators for each cross-curricular and content-area standard that move students toward proficiency and the achievement of graduation standards

Learning Objectives

Learning objectives guide the design of curriculum units that move students toward proficiency and the achievement of performance indicators

Cross-Curricular Graduation Standards

5–8 standards taught in all content areas

Verification of Proficiency

Students demonstrate achievement of content-area graduation standards through their aggregate performance on summative assessments over time

Summative Assessment

Graded summative assessments are used to evaluate the achievement of performance indicators

Formative Assessment

Ungraded formative assessments are used to evaluate student learning progress

Body of Evidence

Students demonstrate achievement of standards through a body of evidence evaluated using common rubrics

Proficiency-Based Learning Model

Proficiency-Based Learning Simplified

A Great Schools Partnership Learning Model

Describes or defines what students need to know and be able to do to demonstrate mastery of a graduation standard.

A Performance Indicator

Is measurable.

A Performance Indicator

Is demonstrable over time.
A Performance Indicator

Provides data points that can be aggregated to determine when a student has met the graduation standard.

Learning Objectives Are...

The component parts of a performance indicator - that is, the performance indicator has been broken down into a series of progressive steps and digestible chunks.
All Standards
All Students
What does this mean?

David Ortiz
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Batting Average</td>
<td>.284</td>
</tr>
<tr>
<td>Slugging</td>
<td>.547</td>
</tr>
<tr>
<td>Home Runs</td>
<td>503</td>
</tr>
<tr>
<td>RBIs</td>
<td>1641</td>
</tr>
<tr>
<td>Stolen Bases</td>
<td>15</td>
</tr>
<tr>
<td>Strike Outs</td>
<td>1664</td>
</tr>
<tr>
<td>Bunting</td>
<td>?</td>
</tr>
</tbody>
</table>

Would you want Big Papi on your team?
All Standards
All Students

It is clear that in life we can’t all be great at all things—or even average at all things—but we can be successful.

Possible Approaches for Students with Disabilities

Foundational Expectations

4722-A 1-C explicitly states that in order to be granted a diploma, students must “(d)eemonstrate proficiency in meeting state standards in all content areas of the system of learning results.” The statute is silent on both how this is determined and whether this applies to performance indicators.

Foundational Expectations

All students are expected to be proficient in every standard in each of the eight disciplines and the Guiding Principles of the Maine Learning Results.
Educators in the school district share the assumption and belief that all students can be successful and demonstrate proficiency in each of the graduation standards.

For Students with Disabilities, the IEP Team is highly functioning and carefully considers the accommodations embedded in the approaches that follow in a way that provides the most appropriate supports needed while maintaining the rigor and challenge of the district’s graduation standards.

Each of the Ten Principles of Proficiency-Based Learning is in place in the district.

...including long-term expectations (such as graduation requirements/standards), short-term expectations (specific learning objectives for learning experiences), and general expectations (performance levels used in the school's grading and reporting system).
Student achievement is evaluated against common learning standards and performance expectations that are consistently applied to all students…regardless of whether they are enrolled in traditional courses or pursuing alternative learning pathways.

All forms of assessment are standards-based and criterion-referenced…and success is defined by the achievement of expected standards, not relative measures of performance or student-to-student comparisons.

Formative assessments measure learning progress during the instructional process…and formative-assessment results are used to inform instructional adjustments, teaching practices, and academic support.

Summative assessments - which are integrated tasks requiring transfer of knowledge and skills, application, and performance in novel settings -…evaluate a student’s level of proficiency at a specific point in time.
6 Academic progress and achievement are monitored and reported separately…from work habits, character traits, and behaviors such as attendance and class participation, which are also monitored and reported.

7 Academic grades communicate learning progress and achievement…to students and families, and grades are used to facilitate and improve the learning process.

8 Students are given multiple opportunities…to improve their work when they fail to meet expected standards.

9 Students can demonstrate learning progress and achievement in multiple ways…through differentiated assessments, personalized-learning options, or alternative learning pathways.
Students are given opportunities to make important decisions about their learning

...which includes contributing to the design of learning experiences and learning pathways.

Ten Principles of Proficiency-Based Learning

Over the past decade, the movement to adopt proficiency-based approaches to teaching, learning, and graduating has gained momentum throughout the United States, as more educators, parents, business leaders, and elected officials recognize that high academic expectations and strong educational preparation are essential to success in today’s world. Schools use proficiency-based learning to raise academic standards, ensure that more students meet those higher expectations, and graduate more students better prepared for adult life.

To help schools establish a philosophical and pedagogical foundation for their work, the Great Schools Partnership created the following “Ten Principles of Proficiency-Based Learning,” which describe the common features found in the most effective proficiency-based systems:

1. All learning expectations are clearly and consistently communicated to students and families, including long-term expectations (such as graduation requirements and graduation standards), short-term expectations (such as the specific learning objectives for a course or other learning experience), and general expectations (such as the performance levels used in the school’s grading and reporting system).

2. Student achievement is evaluated against common learning standards and performance expectations that are consistently applied to all students regardless of whether they are enrolled in traditional courses or pursuing alternative learning pathways.

3. All forms of assessment are standards-based and criterion-referenced, and success is defined by the achievement of expected standards, not relative measures of performance or student-to-student comparisons.

4. Formative assessments measure learning progress during the instructional process, and formative-assessment results are used to inform instructional adjustments, teaching practices, and academic support.

5. Summative assessments evaluate learning achievement, and summative-assessment results record a student’s level of proficiency at a specific point in time.

6. Academic progress and achievement are monitored and reported separately from work habits, character traits, and behaviors such as attendance and class participation, which are also monitored and reported.

7. Academic grades communicate learning progress and achievement to students and families, and grades are used to facilitate and improve the learning process.

8. Students are given multiple opportunities to improve their work when they fail to meet expected standards.

9. Students can demonstrate learning progress and achievement in multiple ways through differentiated assessments, personalized learning options, or alternative learning pathways.

10. Students are given opportunities to make important decisions about their learning, which includes contributing to the design of learning experiences and learning pathways.

Pathways to Demonstration

Strategy 1
All Standards; all Performance Indicators

Measurement: All performance indicators are met through common means at a minimally accepted level above a common cut score.

Turn + Talk

Share your sentence, phrase, and word

Why are these pieces meaningful to you?
Pathways to Demonstration

Strategy 2
All Standards; all Performance Indicators with accommodations

Measurement: All performance indicators are met through common means with accommodations as necessary and appropriate at a minimally accepted level above a common cut score

Pathways to Demonstration

Strategy 3
All Standards; all Performance Indicators Attempted; Non-100% Mathematical Determination

Measurement: Students earn scores on all performance indicators through common means but student demonstration of the graduation standard is based on a different mathematical computation

Pathways to Demonstration

Strategy 4
All Standards; all Performance Indicators Attempted; Accommodated Non-100% Mathematical Determination

Measurement: The same as Strategy 3 accept that a student’s IEP may make accommodations in the usual and common mathematical determination.

Mathematical Determination?

As the statute is quiet on local determination of achievement of standards, instead of mathematically requiring passing scores on all performance indicators, a district could:

- require an average score on performance indicators is above any set cut score; or
- set a % of performance indicator scores that must be above the cut score; or
- identify key performance indicators plus an overall %
Aligning your assessment structure to your strategies to determine proficiency

Crafting Scoring Criteria: Design Guide - 5 Components

Scoring criteria:

- Are task neutral
- Are aligned with the level of cognitive demand in the Performance Indicator
- Include all elements of the Performance Indicator
- Describe complexity rather than frequency
- Focus on what students can do rather than deficiencies

Avoid Terms Focused on Frequency

- Frequently
- Reliably
- Rarely
- Never
Use Terms Focused on Cognitive Demand

- Create
- Explain
- Recognize
- Describe

Creating a Rubric for a Summative Assessment

<table>
<thead>
<tr>
<th>Performance Indicator</th>
<th>Emerging</th>
<th>Developing</th>
<th>Accomplished</th>
<th>Exemplary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the periodic table as a model to predict the relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level of atoms (HS-PS1-1)</td>
<td>Student is able to use the periodic table to accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level.</td>
<td>Student is able to use the periodic table to accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level and analyze the relationship between the periodic table and other characteristics of that element.</td>
<td>Student is able to use the periodic table to accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level, accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level and analyze the relationship between the periodic table and other characteristics of that element and classify them appropriately.</td>
<td>Student is able to use the periodic table to accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level, accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level and analyze the relationship between the periodic table and other characteristics of that element and classify them appropriately.</td>
</tr>
<tr>
<td>Construct and revise an explanation of the outcome of a simple chemical reaction based on the patterns of electrons, trends, and properties such as outermost energy level of atoms in the periodic table and its inherent characteristics of that element. (HS-PS1-2)</td>
<td>Student is able to determine the outcome of a simple chemical reaction and explain it in relation to the student's location on the periodic table.</td>
<td>Student is able to use their knowledge of the periodic table to accurately predict the outcome of simple chemical reactions and explain the differences in outcomes by explicitly referencing the periodic table and its inherent characteristics of that element.</td>
<td>Student is able to construct open-ended questions that build on one another and require evidence and support.</td>
<td>I can analyze my own research questions to refine them based on my earlier questions and learning.</td>
</tr>
<tr>
<td>Use evidence and logic appropriately in communication.</td>
<td>Recognize ideas, concepts, problems, or varied perspectives related to a topic or concept but does not use reasoning to generate a clear claim.</td>
<td>Analyze and integrate carefully selected evidence from diverse relevant sources into the focused work, analyzing or comparing the information from these sources.</td>
<td>Apply evidence in a novel or unfamiliar situation to design a solution.</td>
<td>I can analyze my own research questions to refine them based on my earlier questions and learning.</td>
</tr>
</tbody>
</table>

Designing Scoring Criteria

Scoring criteria describe levels of proficiency for each performance indicator.

<table>
<thead>
<tr>
<th>Performance Indicators</th>
<th>Does Not Meet</th>
<th>Partially Meets</th>
<th>Meets</th>
<th>Exceeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be able to develop appropriate research questions. (CCSS:ELA-Literacy:WHST. 11-12-7)</td>
<td>I can list some specifics about a topic that would help develop my understanding.</td>
<td>I can identify broad questions that are relevant to my studies and focus my research.</td>
<td>I can construct open-ended questions that build on one another and require evidence and support.</td>
<td>I can analyze my own research questions to refine them based on my earlier questions and learning.</td>
</tr>
</tbody>
</table>

Creating a Rubric for a Summative Assessment

<table>
<thead>
<tr>
<th>Performance Indicator</th>
<th>Emerging</th>
<th>Developing</th>
<th>Accomplished</th>
<th>Exemplary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the periodic table as a model to predict the relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level of atoms (HS-PS1-1)</td>
<td>Student is also able to use the periodic table to accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level.</td>
<td>Student is able to explain the elements in the periodic table and its inherent characteristics of that element.</td>
<td>Student is also able to use the periodic table to accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level and analyze the relationship between the periodic table and other characteristics of that element.</td>
<td>Student is also able to use the periodic table to accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level, accurately predict relative physical and chemical properties of elements based on the patterns of electrons in the outermost energy level and analyze the relationship between the periodic table and other characteristics of that element and classify them appropriately.</td>
</tr>
<tr>
<td>Construct and revise an explanation of the outcome of a simple chemical reaction based on the patterns of electrons, trends, and properties such as outermost energy level of atoms in the periodic table and its inherent characteristics of that element. (HS-PS1-2)</td>
<td>Student is able to determine the outcome of a simple chemical reaction and explain it in relation to the student's location on the periodic table.</td>
<td>Student is able to use their knowledge of the periodic table to accurately predict the outcome of simple chemical reactions and explain the differences in outcomes by explicitly referencing the periodic table and its inherent characteristics of that element.</td>
<td>Student is able to construct open-ended questions that build on one another and require evidence and support.</td>
<td>I can analyze my own research questions to refine them based on my earlier questions and learning.</td>
</tr>
<tr>
<td>Use evidence and logic appropriately in communication.</td>
<td>Recognize ideas, concepts, problems, or varied perspectives related to a topic or concept but does not use reasoning to generate a clear claim.</td>
<td>Analyze and integrate carefully selected evidence from diverse relevant sources into the focused work, analyzing or comparing the information from these sources.</td>
<td>Apply evidence in a novel or unfamiliar situation to design a solution.</td>
<td>I can analyze my own research questions to refine them based on my earlier questions and learning.</td>
</tr>
</tbody>
</table>
From Standards to Units

Proficiency-Based Learning Simplified
A Great Schools Partnership Learning Model

www.greatschoolspartnership.org/proficiency/

- State + Local Policies
- State + Local Standards
- Assessment + Verification
- Grading + Reporting

What excites you?
What puzzles you?
What concerns you?

THANK YOU

David J. Ruff
druff@greatschoolspartnership.org
207.773.0505